
UPPSALA UNIVERSITY

COURSE NAME: HIGH PERFORMANCE AND PARALLEL
COMPUTING

COURSE CODE: 1TD064

Project - Matrix-matrix multiplication with Strassens algorithm

Author:
Alhassan JAWAD

Supervisor: Peter Munch

25-05-2024

Matrix-matrix multiplication with Strassens algorithm

Abstract

This project looks into utilizing OpenMP to parallelize Strassen’s algorithm
for matrix-matrix multiplication. The implementation of the algorithm in C is ex-
amined, with an emphasis on parallelizing and optimizing the serial code to make
use of a computer’s multi-core system. The study describes the measures imple-
mented, such as loop fusion methods and memory management improvements,
to minimize computational complexity. The findings demonstrate the substantial
runtime gains made possible by parallelization, highlighting the influence of matrix
size and structure on the algorithm’s performance.

Submitted to the course HIGH PERFORMANCE AND PARALLEL COMPUTING (1TD064).
Please do not redistribute without permission.

1 Introduction

At the same rate as technology advances, computer’s get more and more complex and powerful
where more cores can be used. This means that the advantage of running programs over multiple
cores/threads/processes (meaning parallel) increases. The goal of this project is to choose a suitable
problem to solve, write a serial code for it and then parallelize the code.

1.1 Problem description

The issue selected for this study is the matrix-matrix multiplication of square matrices by the
use of Strassen’s Algorithm. The technique reduces the computational cost of the Matrix-Matrix
multiplication.

Three loops of iteration are typically used to compute a matrix-matrix multiplication. The compu-
tational cost of multiplying two square matrices of size n is θ(n3). Divide and conquer is another
popular strategy for multiplying square matrices where n is a power of two. The essential concept is
to divide the resultant matrix (denoted C) and the two matrices that need to be multiplied (denoted A
and B) into four sub-matrices, as shown in the following equation.

C =

[
C11 C12

C21 C22

]
, A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
(1.1.1)

The C matrix can then be calculated as:

C =

[
C11 C12

C21 C22

]
=

[
A11 ×B11 +A12 ×B21 A11 ×B12 +A12 ×B22

A21 ×B11 +A22 ×B21 A21 ×B12 +A22 ×B22

]
(1.1.2)

8 recursive calls are required to calculate the four C sub-matrices since the sub-matrices’ multiplica-
tions are done recursively. The divide-and-conquer technique has the same computational complexity
as the iterative method with three for-loops, meaning θ(n3) [1] [2].

Thus, we need to find a way to reduce the computational complexity as much as possible.

1.1.1 History of how to reduce the complexity of eq. 1.1.2

Volker Strassen demonstrated in 1968 that it is possible to rewrite the divide-and-conquer algorithm
so that it only requires 7 recursive calls. Rewriting equation 1.1.2 accomplishes this. Firstly, as the
following equation demonstrates, seven equations are computed:

M1 = (A11 +A22) · (B11 +B22)

M2 = (A21 +A22) ·B11

M3 = A11 · (B12 −B22)

M4 = A22 · (B21 −B11)

M5 = (A11 +A12) ·B22

M6 = (A21 −A11) · (B11 +B12)

M7 = (A12 −A22) · (B21 +B22)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.1.3)

We see that each equation contains only a single matrix-matrix multiplication, and thus only 7
recursive calls are needed. If we were to rewrite eq. 1.1.2 again this time using the equations from
1.1.3 we get:

C =

[
C11 C12

C21 C22

]
=

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 −M3 +M6

]
(1.1.4)

And since only 7 recursive calls are made instead of 8, we get a computational complexity that is
θ(nlog2(7)) ≈ θ(n2.8) [1].

2

1.2 The chosen approach

First, we will create a serial C implementation of the matmul algorithm. This will provide us a
starting point for comparison and help us comprehend the algorithm’s fundamental features. Next,
we will analyze the serial code to identify which parts may be efficiently parallelized using OpenMP
so it can be run on multiple processes. Our goal is to enhance the code’s performance so that larger
matrices can be multiplied with reduced computational cost.

This report shall present the workings of a serial matmul (matrix multiplication) code, analyze it and
then start optimizing the serial code. The program language to be used is C and the code will be
parallelized using the Open Multi-Processing (OpenMP) library.

We talked above about square matrices where n was a power of 2, but what about when the matrices
are not of the power of 2? I solved that problem by padding the matrices with zeroes if n was odd
before dividing the matrices into sub-matrices. On the other hand, if n was even, there would be no
need for padding since the matrices could be partitioned evenly into four sub-matrices.

3

2 Solution Method

2.1 The Serial Code

The serial code takes 2 arguments, the first is the input file where the two matrices to be multiplied, A
and B, are located. The input file includes an integer indicating the matrices’ sizes, followed by a
row-by-row breakdown of the A matrix’s elements and a row-by-row breakdown of the B matrix’s
elements. Doubles were used to hold the components of the A and B matrices.

The name of the output file is the second parameter. In this file, the size of the C-matrix is recorded
as an integer, after which the elements of the generated C matrix are written row by row and saved as
doubles1.

Summarizing the serial code:

Within the main function, the input arguments were read and stored as variables. Afterwards, memory
for the A, B, and C matrices was allocated once the size was received from the input file. After that,
the data was read from the file and inserted into the designated matrices for the A and B matrices.
A custom function that used Strassen’s algorithm to conduct the matrix-matrix multiplication was
launched along with a timer started before.

Regarding the custom Strassen multiplication function, the size variable and the matrices A, B,
and C (were to store it) were inputs to the function. The function’s default scenario (base case) was
for its inputs to be matrices of size 1x1. If that was the case then A and B can be multiplied directly,
with the outcome being saved in C.

For the case when size is not a power of 2, I started by taking size modulo two to see if it was odd or
even. The size was divided by two if the result was zero; if not, one was added to the size, and the
result was then divided by two.

But the above solution didn’t work very good for when size was equal to 1 as then the result of
modulo was 1 and the size was 1 again. So I rewrote this part:

if (rest == 0) {
size = size / 2;

// Matrix size in not a power of 2 => padding needed
} else {

size = (size + 1) / 2; }

to a single if statement that checked if the result of the modulo operation AND the size was above 1
then:

if (rest == 0 && size > 1) { // Only divide if size is not 1
size = size / 2; }

The padding mechanism makes sure that even sizes that are not powers of two are ultimately reduced
to either a power of two or the base case of one, even if the code doesn’t address these situations
directly in the first if statement. As a result, the code runs properly for all matrix sizes—even those
that aren’t powers of two.

Next, I allocated memory for the matrices A11 −A22, B11 −B22, C11 −C22 and M1 −M7 together
with memory locations for temporary matrices for addition/subtraction. A quick observation of
equations 1.1.1 and 1.1.3 shows that we need 29 malloc calls as we need memory locations reserved
for 7 M-matrices, 10 temporary metrics for addition/subtract and 12 A-B-V-Matrices.

The next stage was to split the A and B matrices into their respective sub-matrices after the memory
was allocated. If the size had been divisible by 2, i.e., the remaining variable was 0, then eq. 2.1.1

1If there exists no output file then one is created with the given name

4

shows how the split was to be made, with the same being done on the B-matrix.
A11[i][j] = A[i][j]

A12[i][j] = A[i][j + size]
A21[i][j] = A[i+ size][j]
A22[i][j] = A[i+ size][j + size]

(2.1.1)

where:
i = [0, 1, ..., size − 1] & [j = 0, 1, ..., size − 1]

and size is the size of the sub-matrix.

For the case when the size is not divisible by 2, I made a small modification/addition to the code were
eq. 2.1.1 was reused again but this time i and j went [0, ..., size-2] instead of [0, ..., size-1]. That we
ended the iterations at size - 2 means that all the rows & columns of the matrices were transferred
except the last one. This operation would have given the same result in the case of padding with
extra 0’s to "reintroduce" a size that is divisible with 22. The same was done for matrix B and its
sub-matrices.

Being done with allocating memory for all matrices and their sub-matrices, I went to the next
stage of calculating the M matrices shown in equation 1.1.3. This was done by first computing the
additions/subtractions and storing them in temporary matrices that were called upon with the function
recursively to handle the multiplication and redo the above-mentioned steps again.

Having calculated the matrices of eq. 1.1.3, the C matrix was computed using the sub-equations
of equation 1.1.4. Afterwards the sub-matrices of C were merged together and then all allocated
memory was freed.

2.2 Optimization of the Serial Code

Reducing the amount of malloc and free calls within the function that calculates Strassen’s algorithm
was the primary goal of the serial code optimization. As the memory on the stack was not enough to
accommodate the potentially huge matrices, we need to store the matrices on the heap (thus the usage
of malloc3).

The heap management must search for accessible space to store data when data is allocated, do
garbage collection and designate it as available when memory is free. This process makes allocating
and releasing memory on the heap quite time-consuming [3].

To further decrease the amount of malloc and free calls, the matrices were stored as 1d arrays instead
of 2d arrays. A single array of size 29sizesize could thus hold the 29 matrices. Additionally, the
matrices were kept in sequential order, with pointers referring to each matrix’s initial element. For
instance, A11 started on element 0, A12 on element size · size, A11 on element 2 · size · size, and
so on. By storing the matrices in this manner, only one malloc call was required for each function
call, down from 29 before <=> only 1 free call is needed to free everything.

Loop fusion was another optimization method used. This required combining several for-loops into
one, increasing effort for each iteration and decreasing loop control overhead due to fewer total
iterations. AS the ten additions/subtractions of eq. 1.1.3 were stored in ten independent matrices,
then ten operations can be done in a single for-loop so that we can save time. Similar optimization
can be done for the splitting of the A and B matrices into sub-matrices and the computation and
merging of the C-matrix.

Regarding optimization flags, -O3 allowed the compiler to optimize aggressively. -Wall was used to
capture any software problems or warnings. The compiler was made to optimize the code for the
processor architecture it was compiled on by using the -march=native option.

2Didn’t use padding so 1 extra row/column in matrix A didn’t need to be allocated
3Otherwise we could use alloca() [3]

5

2.3 Parallelization of the Serial Code

For the parallelized code, I introduced a third parameter that will specify the number of processes as
an input parameter to the program. As the I/O operations need to be done sequentially, they were left
out of the parallelization and their loops were not parallelized.

In this section, I will just talk about parallelizing the optimized serial code. In case you want to check
how to parallelize the non-optimized code, then check the references where I have all 4 code versions
(non-optimized serial, optimized serial, parallel non-optimized serial, parallel optimized serial).

The first thing I did was using pragma omp parallel for schedule(static) to parallelize the part of the
strassen function that calculates the matrix-matrix multiplication with Strassen’s algorithm. Because
of the static scheduling, the loop is split up across the processes quite equally. Static scheduling was
chosen as the same amount of work can be done between all processes and thus there is no load
balancing issues.

Regarding the 7 recursive calls that compute the M-matrices, the task directive of OpenMP was used
to parallelize them within the code. First, pragma omp parallel is used to specify the parallel section.
The various tasks are then created by a single thread using pragma omp single. The tasks are defined
using pragma omp task, and are thereafter carried out in parallel.

6

3 Experiments

No specific files or instructions where given about how to test the codes’ performance. That is why I
created my own input files containing different random matrices using a simple MatLab code4.

3.1 Hardware specifications

All performance experiments were performed on the @vitsippa.it.uu.se Linux machine hosted by
Uppsala University [4]. The Linux machines are configured to have an AMD Opteron (Bulldozer)
6282SE@2.6GHz (16-core, dual socket) CPU, 128 GB memory and an Ubuntu 22.04.4 LTS operating
system (OS) with a total of 467 processes according to the terminal information5.

3.2 Performance of the code

At first, small scale tests using 2x2, 3x3 and 4x4 matrices were made to make sure the code is right.

(a) 2x2 Matrices (b) 3x3 Matrices (c) 4x4 Matrices

Figure 3.2.1: The matrices A & B and their element-wise multiplication matrix C, computed using
Strassen’s algorithm, for different dimensions.

The matrices were printed using nested-loops placed inside the code6:

printf("A = \n");
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
printf("%lf ", A[i][j]); }

printf("\n"); }

printf("B = \n");
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
printf("%lf ", B[i][j]); }

printf("\n"); }
...
...
printf("C = \n");
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
printf("%lf ", C[i][j]); }

printf("\n"); }

As can be seen from the 3 figures illustrated in fig. 3.2.1, the code produces correct multiplication of
A·B for all the cases with 2x2, 3x3 and 4x4 matrices.

4Given in references
5Seen after logging into vitsippa
6Removed them before submitting the final code

7

The next stage of performance experiments involved testing the program’s execution time for various
sizes and processes. Initially, power 2 matrices were examined.

Table 3.2.1: Time evaluations for matrix multiplication of power-of-2 matrices. As these matrices
have an even size, it was never necessary to pad them with zeros. The used code is the parallelized
optimized serial code.

Matrix size: 64 x 64 128 x 128 256 x 256 512 x 512 1024 x 1024
Processes: 1 Time(s): 0.126 Time(s): 0.879 Time(s): 6.143 Time(s): 42.494 Time(s): 302.135
Processes: 2 Time(s): 0.081 Time(s): 0.569 Time(s): 3.934 Time(s): 27.612 Time(s): 195.814
Processes: 3 Time(s): 0.061 Time(s): 0.431 Time(s): 2.982 Time(s): 20.924 Time(s): 148.730
Processes: 4 Time(s): 0.043 Time(s): 0.302 Time(s): 2.096 Time(s): 14.697 Time(s): 103.936
Processes: 5 Time(s): 0.042 Time(s): 0.297 Time(s): 2.061 Time(s): 14.398 Time(s): 102.488
Processes: 6 Time(s): 0.041 Time(s): 0.288 Time(s): 1.998 Time(s): 14.047 Time(s): 99.405
Processes: 7 Time(s): 0.023 Time(s): 0.158 Time(s): 1.102 Time(s): 7.676 Time(s): 54.931
Processes: 8 Time(s): 0.022 Time(s): 0.155 Time(s): 1.080 Time(s): 7.500 Time(s): 53.000

Afterwards, matrices that are not of power of 2 were used with the code:

Table 3.2.2: Time evaluations for matrix multiplication of not-power-of-2 matrices. As these matrices
have an odd size, it is necessary that we pad them with zeros to make them even. The used code is
the parallelized optimized serial code.

Matrix size: 111 x 111 222 x 222 444 x 444 555 x 555 666 x 666
Processes: 1 Time(s): 0.983 Time(s): 6.619 Time(s): 47.185 Time(s): 92.342 Time(s): 143.031
Processes: 2 Time(s): 0.615 Time(s): 4.282 Time(s): 30.112 Time(s): 59.001 Time(s): 92.364
Processes: 3 Time(s): 0.491 Time(s): 3.344 Time(s): 22.896 Time(s): 45.000 Time(s): 69.032
Processes: 4 Time(s): 0.322 Time(s): 2.328 Time(s): 15.915 Time(s): 31.931 Time(s): 48.782
Processes: 5 Time(s): 0.318 Time(s): 2.289 Time(s): 15.611 Time(s): 30.687 Time(s): 47.575
Processes: 6 Time(s): 0.308 Time(s): 2.131 Time(s): 15.543 Time(s): 30.300 Time(s): 46.371
Processes: 7 Time(s): 0.178 Time(s): 1.227 Time(s): 8.399 Time(s): 16.568 Time(s): 25.203
Processes: 8 Time(s): 0.169 Time(s): 1.186 Time(s): 8.581 Time(s): 17.730 Time(s): 26.351

8

With the needed data collected, we can start plotting graphs that show the effectiveness of the code.

Figure 3.2.2: Runtime of the code plotted against matrix size.

The above figure combines both the results of tables 3.2.1 and 3.2.2. It shows how effective the
algorithm is for power-of-2 matrices, for not-power-of-2 matrices, and how the computational time
differs for sequential runs with 1 process versus parallel runtime with 8 processes.

Figure 3.2.3: This figure shows the values of table 3.2.2 plotted as runtime versus matrix size

The following figure will show the speedup gotten for the power-of-2 matrices. Speedup is calculated
as the parallel time divided with the sequential time (time for 1 processes).

9

Figure 3.2.4: Speedup for the power-of-2 matrices plotted versus the number of processes.

10

4 Conclusion

This project strove to write a code that calculates the element-wise matrix multiplication of 2 matrices
A & B and stores the result within matrix C. The algorithm used was Strassen’s algorithm and the
code works as it should, as shown in figure 3.2.1.

Some key observations from figure 3.2.2:

• Non-power-of-2 matrices always have a longer runtime than power-of-2 matrices. This is
likely due to overhead creation because of padding the matrices with zeros so that their
dimensions are even.

• The green line represents the runtime for power-of-2 matrices, which nearly matches the
theoretical complexity of cubic time. This implies that for these matrix sizes, the algorithm
is effective.

• For both types of matrices, the runtime is significantly reduced when the number of processes
is increased from 1 to 8. This illustrates how parallelization in matrix multiplication works
well.

• Runtime grows dramatically with matrix size, especially for non-power-of-2 matrices. This
emphasizes how crucially effective algorithms are for big matrices.

The above observations conclude that the dimensions and structure of the matrices can have a
significant impact on the effectiveness of matrix multiplication algorithms. In addition, runtime can
be greatly increased via parallelization, particularly for big matrices, and non-power-of-2 matrices
are more computationally expensive than power-of-2 matrices, most likely as a result of the addition
of additional overhead.

What we also see from figure 3.2.2 is that the written algorithm has a computational time complexity
that is closer to θ(n2.8) than to θ(n3), which is expected as the code implements Strassen’s algorithm.
The same thing can also be seen from figure 3.2.3 that shows how well the observed time matched
the line displaying a θ(n2.8) time complexity.

Figure 3.2.4 showed a behavior that was noteworthy. When four processes were used, the speedup
reached around 3. After that, the speedup was hardly noticeable between 4 and 6 processes until
making a big surge at 7 processes, after which it leveled off. It seems that the behavior remained
consistent over matrix sizes ranging from 1 to 6 processes, varying slightly between 7 and 8 processes.

As Strassen’s algorithm have seven jobs executing the recursive matrix-matrix multiplication, it
could be explained that 7 processes makes the code have ideal speedup. That is reasonable as with 7
processes, each process will only need to execute 1 time.

On the other hand, when for example 4 processes were employed, 4 processes completed the first
four tasks, and then 3 processes completed the final three tasks while one processes waited. The same
can be said for 5 and 6 processes in which 3 and 1 processes will wait and waste time, respectively.

11

4.1 Further improvements

Looking at the code, if we were to use this code to multiply bigger matrices than the ones I used
here, then we need to modify the code so that the data type of the size variable becomes long.

The greatest matrix-matrix multiplication that can be computed as of now is around a size of 8740, as
29 matrices are allocated at once. This was calculated in the following way:

AVAILABLE MEMORY IN BYTES: 2GB IS EQUAL TO 2 * 1024 * 1024 * 1024 BYTES

MEMORY PER MATRIX: A SINGLE MATRIX OF SIZE N X N WOULD REQUIRE N * N * 8 BYTES
OF MEMORY.

TOTAL MEMORY FOR 29 MATRICES: STORING 29 SUCH MATRICES WOULD NEED
APPROXIMATELY 29 * N * N * 8 BYTES.

Setting the above "equations" equal to each other and solving for N gives us:

=> 29 ·N ·N · 8 ≈ 2 · 1024 · 1024 · 1024

N2 ≈ (2 · 1024 · 1024 · 1024)
(29 · 8)

N ≈

√
(2 · 1024 · 1024 · 1024)

(29 · 8)
=> N ≈ 8740

Since the size variable is an int, it will overflow if bigger matrices are used. This will likely result in
a segmentation fault since an un-mapped address will be called.

Another thing that can be further improved is the usage of 10 different temporary matrices. In the
serial code, 2 temporary matrices were allocated and used throughout the whole code. This is because
2 additions/subtraction were needed for the calculations of each M-matrix. Furthermore, because the
serial code did everything sequentially, it was possible to reuse the same temporary matrices over and
over again.

This was a challenge, though, when the code was parallelized, as different processes may alter the
temporary matrices at the same time, providing the respective recursive function with the incorrect
input matrix. This was why I introduced 8 additional temporary in the parallel code.

If we could somehow reduce the number of temporary matrices, for example by computing the first
five temporary matrices (meaning that we calculating the M1 −M4) in parallel7 and then reuse the
same five temporary matrices again to compute the final four M-matrices, it should be feasible to
lower the memory needed as the needed number of matrices would drop from 29 to 24.

7Possibly with nested parallelism enabled

12

5 References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein.z Introduction to
Algorithms, Third Edition, The MIT Press, 2009, page 75-82.

[2] Volker S., Strassen algorithm, in Wikipedia, The Free Encyclopedia,
https://en.wikipedia.org/wiki/Strassen_algorithm, [Online]. Accessed on: May 27, 2024

[3] Agner Fog., Optimizing software in C++8, Technical University of Denmark, 2004, page 95-96.

8Course Literature

13

Appendix

Non-optimized Serial Code

/* High Performance and Parallel Computing 1TD064
Chosen subject: Project - Matrix-matrix multiplication with Strassens algorithm
The project is about implementing the Strassen algorithm for matrix-matrix

multiplication.
The algorithm is a divide and conquer algorithm that reduces the number of

multiplications needed
for the matrix-matrix multiplication from 8 to 7.
@version
1.0

@since
22-05-2024

@desc
The Strassens algorithm is implemented in C and the optimized serial version is

implemented in this file.
The parallel version is implemented in the file strassen_parallel.c.
@inputs
1. The filename of the file containing the A and B matrices to be multiplied.
2. The filename of the file where the resulting C matrix will be stored.
3. The last input argument was the used number of processes for

running the program in parallel (used in the parallel version of the program)
@outputs
The program writes the resulting C matrix to the output file.

@throwbacks
Time taken fro the multiplication

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
//Main strassen function. The function is recursive and will call itself until the

base case is reached.
// matmult = matrix multiplication
static void strassen_matmult(double **A, double **B, double **C, int size){

// Base case when the matrix is 1x1
if (size == 1) {

C[0][0] = A[0][0] * B[0][0];
} else {

int rest = size % 2; // Remainder when dividing the matrix size by 2

// Matrix size is a power of 2 => no padding needed
if (rest == 0 && size > 1) { // Only divide if size is not 1

size = size / 2; }
/*

Allocating memory for the sub-matrices, the 7 M matrices, and two
temporary matrices

to be used when addition is needed before multiplication.
*/

double **C11 = (double**)malloc(size *sizeof(double*)); // Matrix C11
double **C12 = (double**)malloc(size *sizeof(double*)); // Matrix C12
double **C21 = (double**)malloc(size *sizeof(double*)); // Matrix C21
double **C22 = (double**)malloc(size *sizeof(double*)); // Matrix C22

double **A11 = (double**)malloc(size *sizeof(double*)); // Matrix A11
double **A12 = (double**)malloc(size *sizeof(double*)); // Matrix A12
double **A21 = (double**)malloc(size *sizeof(double*)); // Matrix A21
double **A22 = (double**)malloc(size *sizeof(double*)); // Matrix A22

14

double **B11 = (double**)malloc(size *sizeof(double*)); // Matrix B11
double **B12 = (double**)malloc(size *sizeof(double*)); // Matrix B12
double **B21 = (double**)malloc(size *sizeof(double*)); // Matrix B21
double **B22 = (double**)malloc(size *sizeof(double*)); // Matrix B22

double **M1 = (double**)malloc(size *sizeof(double*)); // Matrix M1
double **M2 = (double**)malloc(size *sizeof(double*)); // Matrix M2
double **M3 = (double**)malloc(size *sizeof(double*)); // Matrix M3
double **M4 = (double**)malloc(size *sizeof(double*)); // Matrix M4
double **M5 = (double**)malloc(size *sizeof(double*)); // Matrix M5
double **M6 = (double**)malloc(size *sizeof(double*)); // Matrix M6
double **M7 = (double**)malloc(size *sizeof(double*)); // Matrix M7

double **temp1 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp2 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

// Allocating memory for the elements in the matrices
for (int i = 0; i<size; i++) {

A11[i] = (double*)malloc(size *sizeof(double));
A12[i] = (double*)malloc(size *sizeof(double));
A21[i] = (double*)malloc(size *sizeof(double));
A22[i] = (double*)malloc(size *sizeof(double));

B11[i] = (double*)malloc(size *sizeof(double));
B12[i] = (double*)malloc(size *sizeof(double));
B21[i] = (double*)malloc(size *sizeof(double));
B22[i] = (double*)malloc(size *sizeof(double));

C11[i] = (double*)malloc(size *sizeof(double));
C12[i] = (double*)malloc(size *sizeof(double));
C21[i] = (double*)malloc(size *sizeof(double));
C22[i] = (double*)malloc(size *sizeof(double));

M1[i] = (double*)malloc(size *sizeof(double));
M2[i] = (double*)malloc(size *sizeof(double));
M3[i] = (double*)malloc(size *sizeof(double));
M4[i] = (double*)malloc(size *sizeof(double));
M5[i] = (double*)malloc(size *sizeof(double));
M6[i] = (double*)malloc(size *sizeof(double));
M7[i] = (double*)malloc(size *sizeof(double));

temp1[i] = (double*)malloc(size *sizeof(double));
temp2[i] = (double*)malloc(size *sizeof(double));

}

// Distributing the A and B matrices into the sub-matrices, only if the
matrix size is power of 2

if (rest == 0){
for (int i = 0; i < size; i++){

for (int j = 0; j < size; j++){
A11[i][j] = A[i][j];
A12[i][j] = A[i][j+size];
A21[i][j] = A[i+size][j];
A22[i][j] = A[i+size][j+size];

B11[i][j] = B[i][j];
B12[i][j] = B[i][j+size];
B21[i][j] = B[i+size][j];
B22[i][j] = B[i+size][j+size];

}
}

/*

15

If the matrix is not of power of 2, the first to second to last rows and
columns

are transferred from the A and B matrix and the last row and column is
determined

by which sub-matrix it is, for example the last row and column of A22
will be zeroes.

*/
} else {

for (int i = 0; i<(size-1); i++) {
for (int j = 0; j<(size-1); j++) {

A11[i][j] = A[i][j];
A12[i][j] = A[i][j+size];
A21[i][j] = A[i+size][j];
A22[i][j] = A[i+size][j+size];

B11[i][j] = B[i][j];
B12[i][j] = B[i][j+size];
B21[i][j] = B[i+size][j];
B22[i][j] = B[i+size][j+size];

}

// The last rows and columns are (depending on the sub-matrix)
either taken from A or B, or is padded with zeros

A11[i][size-1] = A[i][size-1];
A11[size-1][i] = A[size-1][i];
A12[i][size-1] = 0;
A12[size-1][i] = A[size-1][i+size];
A21[i][size-1] = A[i+size][size-1];
A21[size-1][i] = 0;
A22[i][size-1] = 0;
A22[size-1][i] = 0;

B11[i][size-1] = B[i][size-1];
B11[size-1][i] = B[size-1][i];
B12[i][size-1] = 0;
B12[size-1][i] = B[size-1][i+size];
B21[i][size-1] = B[i+size][size-1];
B21[size-1][i] = 0;
B22[i][size-1] = 0;
B22[size-1][i] = 0;

}
A11[size-1][size-1] = A[size-1][size-1];
A12[size-1][size-1] = 0;
A21[size-1][size-1] = 0;
A22[size-1][size-1] = 0;

B11[size-1][size-1] = B[size-1][size-1];
B12[size-1][size-1] = 0;
B21[size-1][size-1] = 0;
B22[size-1][size-1] = 0;

}

16

/*
For the following calculations, the two temporary matrices are used for

addition
before using Strassen’s algorithm for multiplication.

*/
// M1 = (A11+A22)*(B11+B22)
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = A11[i][j] + A22[i][j];
temp2[i][j] = B11[i][j] + B22[i][j];

}
}
strassen_matmult(temp1, temp2, M1, size);

// M2 = (A21+A22)*B11
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = A21[i][j] + A22[i][j];

}
}
strassen_matmult(temp1, B11, M2, size);

// M3 = A11*(B12-B22)
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = B12[i][j] - B22[i][j];

}
}
strassen_matmult(A11, temp1, M3, size);

// M4 = A22*(B21-B11)
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = B21[i][j] - B11[i][j];

}
}
strassen_matmult(A22, temp1, M4, size);

// M5 = (A11+A12)*B22
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = A11[i][j] + A12[i][j];

}
}
strassen_matmult(temp1, B22, M5, size);

// M6 = (A21-A11)*(B11+B12)
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = A21[i][j] - A11[i][j];
temp2[i][j] = B11[i][j] + B12[i][j];

}
}
strassen_matmult(temp1, temp2, M6, size);

// M7 = (A12-A22)*(B21+B22)
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
temp1[i][j] = A12[i][j] - A22[i][j];
temp2[i][j] = B21[i][j] + B22[i][j];

}
}
strassen_matmult(temp1, temp2, M7, size);

17

// C11 = M1 + M4 - M5 + M7
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
C11[i][j] = M1[i][j] + M4[i][j] - M5[i][j] + M7[i][j];

}
}

// C12 = M3 + M5
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
C12[i][j] = M3[i][j] + M5[i][j];

}
}

// C21 = M2 + M4
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
C21[i][j] = M2[i][j] + M4[i][j];

}
}

// C22 = M1 - M2 + M3 + M6
for (int i = 0; i<size; i++){

for (int j = 0; j<size; j++){
C22[i][j] = M1[i][j] - M2[i][j] + M3[i][j] + M6[i][j];

}
}

// If C is a power of 2, the sub-matrices are merged into C
if (rest == 0) {

for (int i = 0; i<size; i++) {
for (int j = 0; j<size; j++) {

C[i][j] = C11[i][j];
C[i][j+size] = C12[i][j];
C[i+size][j] = C21[i][j];
C[i+size][j+size] = C22[i][j];

}
}

// If C is not a power of 2, the padding is removed
} else {

for (int i = 0; i<(size-1); i++) {
for (int j = 0; j<(size-1); j++) {

C[i][j] = C11[i][j];
C[i][j+size] = C12[i][j];
C[i+size][j] = C21[i][j];
C[i+size][j+size] = C22[i][j];

}
C[i][size-1] = C11[i][size-1];
C[size-1][i] = C11[size-1][i];
C[size-1][i+size] = C12[size-1][i];
C[i+size][size-1] = C21[i][size-1];

}
C[size-1][size-1] = C11[size-1][size-1]; }

// Free Memory
for (int i = 0; i<size; i++) {

// Matrix C’s elements
free(C11[i]);
free(C12[i]);
free(C21[i]);
free(C22[i]);

18

// Matrix A’s elements
free(A11[i]);
free(A12[i]);
free(A21[i]);
free(A22[i]);

// Matrix B’s elements
free(B11[i]);
free(B12[i]);
free(B21[i]);
free(B22[i]);

// Matrix M’s elements
free(M1[i]);
free(M2[i]);
free(M3[i]);
free(M4[i]);
free(M5[i]);
free(M6[i]);
free(M7[i]);

// Temporary matrix’s elements
free(temp1[i]);
free(temp2[i]);

}
// Matrix C
free(C11);
free(C12);
free(C21);
free(C22);

// Matrix A
free(A11);
free(A12);
free(A21);
free(A22);

// Matrix B
free(B11);
free(B12);
free(B21);
free(B22);

// Matrix M
free(M1);
free(M2);
free(M3);
free(M4);
free(M5);
free(M6);
free(M7);

// Temporary matrix
free(temp1);
free(temp2);

}
}

19

int main(int argc, char **argv){
// Checking the number of arguments
if (argc != 3) {

fprintf(stderr, "Usage: %s <input file> <output file>\n", argv[0]);
exit(1);

}
// Initializing variables
char filename[60]; // 60 characters for the filename
strcpy(filename, argv[1]); // strcpy copies the string from argv[1] to filename
char outname[60];
strcpy(outname, argv[2]);

// Reading the input file
int size;
FILE *input;
input = fopen(filename, "r"); // r = read
// Checking if the file can be opened
if (input == NULL) {

fprintf(stderr, "The following file can not be opened: %s", filename);
exit(1);

}
// read_res = number of elements read
int read_res = fread(&size, sizeof(int), 1, input);

//Allocating memory for the A and B matrices to be multiplied and for the C
matrix where the result will be stored

double **A = (double**)malloc(size *sizeof(double*)); // A matrix
double **B = (double**)malloc(size *sizeof(double*)); // B matrix
double **C = (double**)malloc(size *sizeof(double*)); // C matrix

for (int i = 0; i < size; i++) {
A[i] = (double*)malloc(size *sizeof(double));
B[i] = (double*)malloc(size *sizeof(double));
C[i] = (double*)malloc(size *sizeof(double));

}

// Extract the matrices A and B from the input file
// Matrix A
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
read_res = fread(&A[i][j], sizeof(double), 1, input); }

}
// Matrix B
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
read_res = fread(&B[i][j], sizeof(double), 1, input); }

}
fclose(input); // Close the input file

// Start measuring the time
clock_t start = clock();
strassen_matmult(A, B, C, size);
clock_t end = clock();
double cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
printf("Time taken for multiplication: %f seconds\n", cpu_time_used);

20

// Store the resulting matrix C in the output file
FILE *output;
output = fopen(outname, "w"); // w = write
// Checking if the file can be opened
if (output == NULL) {

fprintf(stderr, "The following file can not be opened: %s", outname);
exit(1);

}
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
fwrite(&C[i][j], sizeof(double), 1, output); }

}
fclose(output); // Close the output file

// Free Memory
for (int i = 0; i < size; i++) {

free(A[i]);
free(B[i]);
free(C[i]);

}
free(A);
free(B);
free(C);
return 0;

}

21

Optimized Serial Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

static void strassen_matmult(double *A, double *B, double *C, int size) {
// Allocate memory for all matrices combined
double *combined_matrices = (double *)malloc(29 * size * size * sizeof(double));
if (combined_matrices == NULL) {

fprintf(stderr, "Memory allocation failed\n");
exit(1);

}

// Pointers to mark the beginning of each matrix within the combined array
double *A11 = combined_matrices;
double *A12 = A11 + size * size;
double *A21 = A12 + size * size;
double *A22 = A21 + size * size;

double *B11 = A22 + size * size;
double *B12 = B11 + size * size;
double *B21 = B12 + size * size;
double *B22 = B21 + size * size;

double *C11 = B22 + size * size;
double *C12 = C11 + size * size;
double *C21 = C12 + size * size;
double *C22 = C21 + size * size;

double *M1 = C22 + size * size;
double *M2 = M1 + size * size;
double *M3 = M2 + size * size;
double *M4 = M3 + size * size;
double *M5 = M4 + size * size;
double *M6 = M5 + size * size;
double *M7 = M6 + size * size;

double *temp1 = M7 + size * size;
double *temp2 = temp1 + size * size;
double *temp3 = temp2 + size * size;
double *temp4 = temp3 + size * size;
double *temp5 = temp4 + size * size;
double *temp6 = temp5 + size * size;
double *temp7 = temp6 + size * size;

// Initialize matrices A and B to the combined array
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
A11[i * size + j] = A[i * size + j];
A12[i * size + j] = A[i * size + j + size];
A21[i * size + j] = A[(i + size) * size + j];
A22[i * size + j] = A[(i + size) * size + j + size];

B11[i * size + j] = B[i * size + j];
B12[i * size + j] = B[i * size + j + size];
B21[i * size + j] = B[(i + size) * size + j];
B22[i * size + j] = B[(i + size) * size + j + size];

}
}

22

// Compute M1 to M7
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
// Calculate M1 = (A11+A22)*(B11+B22)
temp1[i * size + j] = (A11[i * size + j] + A22[i * size + j]) * (B11[i *

size + j] + B22[i * size + j]);

// Calculate M2 = (A21+A22)*B11
temp2[i * size + j] = (A21[i * size + j] + A22[i * size + j]) * B11[i *

size + j];

// Calculate M3 = A11*(B12-B22)
temp3[i * size + j] = A11[i * size + j] * (B12[i * size + j] - B22[i *

size + j]);

// Calculate M4 = A22*(B21-B11)
temp4[i * size + j] = A22[i * size + j] * (B21[i * size + j] - B11[i *

size + j]);

// Calculate M5 = (A11+A12)*B22
temp5[i * size + j] = (A11[i * size + j] + A12[i * size + j]) * B22[i *

size + j];

// Calculate M6 = (A21-A11)*(B11+B12)
temp6[i * size + j] = (A21[i * size + j] - A11[i * size + j]) * (B11[i *

size + j] + B12[i * size + j]);

// Calculate M7 = (A12-A22)*(B21+B22)
temp7[i * size + j] = (A12[i * size + j] - A22[i * size + j]) * (B21[i *

size + j] + B22[i * size + j]);
}

}

// Recursively compute C matrices using M1 to M7
strassen_matmult(temp1, temp2, M1, size);
strassen_matmult(temp3, B22, M2, size);
strassen_matmult(A11, temp4, M3, size);
strassen_matmult(A22, temp5, M4, size);
strassen_matmult(temp6, temp7, M5, size);

// Calculate C11, C12, C21, C22 using M1 to M7
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C11[i * size + j] = M1[i * size + j] + M4[i * size + j] - M5[i * size +

j] + M7[i * size + j];
C12[i * size + j] = M3[i * size + j] + M5[i * size + j];
C21[i * size + j] = M2[i * size + j] + M4[i * size + j];
C22[i * size + j] = M1[i * size + j] - M2[i * size + j] + M3[i * size +

j] + M6[i * size + j];
}

}

// Free memory after function execution
free(combined_matrices);

}

23

int main(int argc, char **argv) {
// Check the number of arguments
if (argc != 3) {

fprintf(stderr, "Usage: %s <input file> <output file>\n", argv[0]);
exit(1);

}

// Initialize variables
char filename[60];
strcpy(filename, argv[1]);
char outname[60];
strcpy(outname, argv[2]);

// Read the input file
int size;
FILE *input;
input = fopen(filename, "r");
if (input == NULL) {

fprintf(stderr, "Error: Unable to open input file: %s\n", filename);
exit(1);

}
int read_res = fread(&size, sizeof(int), 1, input);

// Allocate memory for matrices A, B, and C
double *A = (double*)malloc(size * size * sizeof(double));
double *B = (double*)malloc(size * size * sizeof(double));
double *C = (double*)malloc(size * size * sizeof(double));

// Read matrices A and B from the input file
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
read_res = fread(&A[i * size + j], sizeof(double), 1, input);
if (read_res != 1) {

fprintf(stderr, "Error: Failed to read from input file\n");
exit(1);

}}}
fclose(input);

// Perform matrix multiplication
clock_t start = clock();
strassen_matmult(A, B, C, size);
clock_t end = clock();
double cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;
printf("Time taken for multiplication: %f seconds\n", cpu_time_used);

// Write the resulting matrix C to the output file
FILE *output;
output = fopen(outname, "w");
if (output == NULL) {

fprintf(stderr, "Error: Unable to open output file: %s\n", outname);
exit(1);}

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

fwrite(&C[i * size + j], sizeof(double), 1, output);
}}

fclose(output);

// Free allocated memory
free(A);
free(B);
free(C);

return 0;
}

24

Parallelized Non-optimized Serial Code

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <omp.h>

//Main strassen function. The function is recursive and will call itself until the
base case is reached.

// matmult = matrix multiplication
static void strassen_matmult(double **A, double **B, double **C, int size){

// Base case when the matrix is 1x1
if (size == 1) {

C[0][0] = A[0][0] * B[0][0];
} else {

int rest = size % 2; // Remainder when dividing the matrix size by 2

// Matrix size is a power of 2 => no padding needed
if (rest == 0 && size > 1) { // Only divide if size is not 1

size = size / 2; }
/*

Allocating memory for the sub-matrices, the 7 M matrices, and two
temporary matrices

to be used when addition is needed before multiplication.
*/

double **C11 = (double**)malloc(size *sizeof(double*)); // Matrix C11
double **C12 = (double**)malloc(size *sizeof(double*)); // Matrix C12
double **C21 = (double**)malloc(size *sizeof(double*)); // Matrix C21
double **C22 = (double**)malloc(size *sizeof(double*)); // Matrix C22

double **A11 = (double**)malloc(size *sizeof(double*)); // Matrix A11
double **A12 = (double**)malloc(size *sizeof(double*)); // Matrix A12
double **A21 = (double**)malloc(size *sizeof(double*)); // Matrix A21
double **A22 = (double**)malloc(size *sizeof(double*)); // Matrix A22

double **B11 = (double**)malloc(size *sizeof(double*)); // Matrix B11
double **B12 = (double**)malloc(size *sizeof(double*)); // Matrix B12
double **B21 = (double**)malloc(size *sizeof(double*)); // Matrix B21
double **B22 = (double**)malloc(size *sizeof(double*)); // Matrix B22

double **M1 = (double**)malloc(size *sizeof(double*)); // Matrix M1
double **M2 = (double**)malloc(size *sizeof(double*)); // Matrix M2
double **M3 = (double**)malloc(size *sizeof(double*)); // Matrix M3
double **M4 = (double**)malloc(size *sizeof(double*)); // Matrix M4
double **M5 = (double**)malloc(size *sizeof(double*)); // Matrix M5
double **M6 = (double**)malloc(size *sizeof(double*)); // Matrix M6
double **M7 = (double**)malloc(size *sizeof(double*)); // Matrix M7

double **temp1 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp2 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp3 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp4 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp5 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp6 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp7 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

25

double **temp8 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp9 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

double **temp10 = (double**)malloc(size *sizeof(double*)); // Temporary
matrix to be used for addition

// Allocating memory for the elements in the matrices
// Here omp parallel for is used to parallelize the for loop
#pragma omp parallel for {

for (int i = 0; i < size; i++) {
A11[i] = (double*)malloc(size *sizeof(double));
A12[i] = (double*)malloc(size *sizeof(double));
A21[i] = (double*)malloc(size *sizeof(double));
A22[i] = (double*)malloc(size *sizeof(double));

B11[i] = (double*)malloc(size *sizeof(double));
B12[i] = (double*)malloc(size *sizeof(double));
B21[i] = (double*)malloc(size *sizeof(double));
B22[i] = (double*)malloc(size *sizeof(double));

C11[i] = (double*)malloc(size *sizeof(double));
C12[i] = (double*)malloc(size *sizeof(double));
C21[i] = (double*)malloc(size *sizeof(double));
C22[i] = (double*)malloc(size *sizeof(double));

M1[i] = (double*)malloc(size *sizeof(double));
M2[i] = (double*)malloc(size *sizeof(double));
M3[i] = (double*)malloc(size *sizeof(double));
M4[i] = (double*)malloc(size *sizeof(double));
M5[i] = (double*)malloc(size *sizeof(double));
M6[i] = (double*)malloc(size *sizeof(double));
M7[i] = (double*)malloc(size *sizeof(double));

temp1[i] = (double*)malloc(size *sizeof(double));
temp2[i] = (double*)malloc(size *sizeof(double));
temp3[i] = (double*)malloc(size *sizeof(double));
temp4[i] = (double*)malloc(size *sizeof(double));
temp5[i] = (double*)malloc(size *sizeof(double));
temp6[i] = (double*)malloc(size *sizeof(double));
temp7[i] = (double*)malloc(size *sizeof(double));
temp8[i] = (double*)malloc(size *sizeof(double));
temp9[i] = (double*)malloc(size *sizeof(double));
temp10[i] = (double*)malloc(size *sizeof(double));

}
}

// Distributing the A and B matrices into the sub-matrices, only if the
matrix size is power of 2

if (rest == 0) {
// Here omp parallel for is used to parallelize the for loop
#pragma omp parallel for {

for(int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

// Matrix A division
A11[i][j] = A[i][j];
A12[i][j] = A[i][j+size];
A21[i][j] = A[i+size][j];
A22[i][j] = A[i+size][j+size];
// Matrix B division
B11[i][j] = B[i][j];
B12[i][j] = B[i][j+size];
B21[i][j] = B[i+size][j];
B22[i][j] = B[i+size][j+size];

}
}}

26

/*
If the matrix is not of power of 2, the first to second to last rows and

columns
are transferred from the A and B matrix and the last row and column is

determined
by which sub-matrix it is, for example the last row and column of A22

will be zeroes.
*/
} else {

#pragma omp parallel for {
for (int i = 0; i < (size-1); i++) {

for (int j = 0; j < (size-1); j++) {
A11[i][j] = A[i][j];
A12[i][j] = A[i][j+size];
A21[i][j] = A[i+size][j];
A22[i][j] = A[i+size][j+size];

B11[i][j] = B[i][j];
B12[i][j] = B[i][j+size];
B21[i][j] = B[i+size][j];
B22[i][j] = B[i+size][j+size];

}

// The last rows and columns are (depending on the sub-matrix)
either taken from A or B, or is padded with zeros

A11[i][size-1] = A[i][size-1];
A11[size-1][i] = A[size-1][i];
A12[i][size-1] = 0;
A12[size-1][i] = A[size-1][i+size];
A21[i][size-1] = A[i+size][size-1];
A21[size-1][i] = 0;
A22[i][size-1] = 0;
A22[size-1][i] = 0;

B11[i][size-1] = B[i][size-1];
B11[size-1][i] = B[size-1][i];
B12[i][size-1] = 0;
B12[size-1][i] = B[size-1][i+size];
B21[i][size-1] = B[i+size][size-1];
B21[size-1][i] = 0;
B22[i][size-1] = 0;
B22[size-1][i] = 0;

}
}
A11[size-1][size-1] = A[size-1][size-1];
A12[size-1][size-1] = 0;
A21[size-1][size-1] = 0;
A22[size-1][size-1] = 0;

B11[size-1][size-1] = B[size-1][size-1];
B12[size-1][size-1] = 0;
B21[size-1][size-1] = 0;
B22[size-1][size-1] = 0;

}

27

/*
For the following calculations, the two temporary matrices are used for

addition
before using Strassen’s algorithm for multiplication.

*/
#pragma omp parallel
{

// single directive ensures execution by a single thread at a time
#pragma omp single
{

// M1 = (A11+A22)*(B11+B22)
// task directive ensures that the tasks are created for each thread
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp1[i][j] = A11[i][j] + A22[i][j];
temp2[i][j] = B11[i][j] + B22[i][j];

}
}
strassen_matmult(temp1, temp2, M1, size);

}

// M2 = (A21+A22)*B11
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp3[i][j] = A21[i][j] + A22[i][j];
}

}
strassen_matmult(temp3, B11, M2, size);

}

// M3 = A11*(B12-B22)
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp4[i][j] = B12[i][j] - B22[i][j];
}

}
strassen_matmult(A11, temp4, M3, size);

}

// M4 = A22*(B21-B11)
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp5[i][j] = B21[i][j] - B11[i][j];
}

}
strassen_matmult(A22, temp5, M4, size);

}

28

//Calculating M5 = (A11+A12)*B22
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp6[i][j] = A11[i][j] + A12[i][j];
}

}
strassen_matmult(temp6, B22, M5, size);

}

// M6 = (A21-A11)*(B11+B12)
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp7[i][j] = A21[i][j] - A11[i][j];
temp8[i][j] = B11[i][j] + B12[i][j];

}
}
strassen_matmult(temp7, temp8, M6, size);

}

// M7 = (A12-A22)*(B21+B22)
#pragma omp task
{

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

temp9[i][j] = A12[i][j] - A22[i][j];
temp10[i][j] = B21[i][j] + B22[i][j];

}
}
strassen_matmult(temp9, temp10, M7, size);

}
}

}
// C11 = M1 + M4 - M5 + M7
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C11[i][j] = M1[i][j] + M4[i][j] - M5[i][j] + M7[i][j];

}
}

// C12 = M3 + M5
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C12[i][j] = M3[i][j] + M5[i][j];

}
}

// C21 = M2 + M4
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C21[i][j] = M2[i][j] + M4[i][j];

}
}

// C22 = M1 - M2 + M3 + M6
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C22[i][j] = M1[i][j] - M2[i][j] + M3[i][j] + M6[i][j];

}
}

29

// If C is a power of 2, the sub-matrices are merged into C
if (rest == 0) {

for (int i = 0; i < size; i++) {
for (int j = 0; j < size; j++) {

C[i][j] = C11[i][j];
C[i][j+size] = C12[i][j];
C[i+size][j] = C21[i][j];
C[i+size][j+size] = C22[i][j];

}
}

// If C is not a power of 2, the padding is removed
} else {

for (int i = 0; i < (size-1); i++) {
for (int j = 0; j < (size-1); j++) {

C[i][j] = C11[i][j];
C[i][j+size] = C12[i][j];
C[i+size][j] = C21[i][j];
C[i+size][j+size] = C22[i][j];

}
C[i][size-1] = C11[i][size-1];
C[size-1][i] = C11[size-1][i];
C[size-1][i+size] = C12[size-1][i];
C[i+size][size-1] = C21[i][size-1];

}
C[size-1][size-1] = C11[size-1][size-1];

}

// Free Memory
for (int i = 0; i < size; i++){

// Matrix A’s elements
free(A11[i]);
free(A12[i]);
free(A21[i]);
free(A22[i]);
// Matrix B’s elements
free(B11[i]);
free(B12[i]);
free(B21[i]);
free(B22[i]);
// Matrix C’s elements
free(C11[i]);
free(C12[i]);
free(C21[i]);
free(C22[i]);
// Matrix M’s elements
free(M1[i]);
free(M2[i]);
free(M3[i]);
free(M4[i]);
free(M5[i]);
free(M6[i]);
free(M7[i]);
// Temporary matrices’ elements
free(temp1[i]);
free(temp2[i]);
free(temp3[i]);
free(temp4[i]);
free(temp5[i]);
free(temp6[i]);
free(temp7[i]);
free(temp8[i]);
free(temp9[i]);
free(temp10[i]);

}

30

// Matrix A
free(A11);
free(A12);
free(A21);
free(A22);
// Matrix B
free(B11);
free(B12);
free(B21);
free(B22);
// Matrix C
free(C11);
free(C12);
free(C21);
free(C22);
// Matrix M
free(M1);
free(M2);
free(M3);
free(M4);
free(M5);
free(M6);
free(M7);
// Temporary matrices
free(temp1);
free(temp2);
free(temp3);
free(temp4);
free(temp5);
free(temp6);
free(temp7);
free(temp8);
free(temp9);
free(temp10);

}
}

int main(int argc, char **argv) {
// Checking the number of arguments
if (argc != 4) {

fprintf(stderr, "Usage: %s <input file> <output file> <number of
threads>\n", argv[0]);

exit(1);
}

// Initializing variables
char filename[60]; // 60 characters for the filename
strcpy(filename, argv[1]); // strcpy copies the string from argv[1] to filename
char outname[60];
strcpy(outname, argv[2]);
const int threads = atoi(argv[3]);
printf("Threads = %d\n", threads);
omp_set_num_threads(threads); // Setting the number of threads to be used in

the parallel region

// Reading the input file
int size;
FILE *input;
input = fopen(filename, "r"); // r = read mode
// Checking if the file can be opened
if (input == NULL) {

fprintf(stderr, "The following file can not be opened: %s", filename);
exit(1);

}

31

// read_res = number of elements read
int read_res;
read_res = fread(&size, sizeof(int), 1, input);

//Allocating memory for the A and B matrices to be multiplied and for the C
matrix where the result will be stored

double **A = (double**)malloc(size *sizeof(double*)); // A matrix
double **B = (double**)malloc(size *sizeof(double*)); // B matrix
double **C = (double**)malloc(size *sizeof(double*)); // C matrix
// Here omp parallel for is used to parallelize the for loop
#pragma omp parallel for

for (int i = 0; i < size; i++) {
A[i] = (double*)malloc(size*sizeof(double));
B[i] = (double*)malloc(size*sizeof(double));
C[i] = (double*)malloc(size*sizeof(double));

}

// Extract the matrices A and B from the input file
// Matrix A
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
read_res = fread(&A[i][j], sizeof(double), 1, input);

}
}
// Matrix B
for(int i = 0; i<size; i++){

for(int j = 0; j<size; j++){
read_res = fread(&B[i][j], sizeof(double), 1, input);

}
}
fclose(input); // Closing the input file
// Start the timer
double start_time = omp_get_wtime();
strassen_matmult(A, B, C, size);
double end_time = omp_get_wtime();
double elapsed_time = end_time - start_time;
printf("Time taken for multiplication: %f\n", elapsed_time);

// Store the resulting matrix C in the output file
FILE *output;
output = fopen(outname, "w"); // w = write mode
if (output == NULL) {

fprintf(stderr, "The following file can not be opened: %s", outname);
exit(1);

}
for (int i = 0; i < size; i++){

for (int j = 0; j < size; j++){
fwrite(&C[i][j], sizeof(double), 1, output);

}
}
fclose(output); // Closing the output file

// Free memory
for (int i = 0; i<size; i++) {

free(A[i]);
free(B[i]);
free(C[i]);

}
free(A);
free(B);
free(C);
return 0;

}

32

Parallelized Optimised Serial Code

/* High Performance and Parallel Computing 1TD064
Chosen subject: Project - Matrix-matrix multiplication with Strassens algorithm
The project is about implementing the Strassen algorithm for matrix-matrix

multiplication.
The algorithm is a divide and conquer algorithm that reduces the number of

multiplications needed
for the matrix-matrix multiplication from 8 to 7.
@version
1.4

@since
23-05-2024

@desc
The Strassens algorithm is implemented in C and the parallel version is

implemented in this file.
The optimized serial version is implemented in the file

strassen_serial_optimized.c.
@inputs
1. The filename of the file containing the A and B matrices to be multiplied.
2. The filename of the file where the resulting C matrix will be stored.
3. The last input argument was the used number of processes for

running the program in parallel
@outputs
The program writes the resulting C matrix to the output file.

@throwbacks
Time taken fro the multiplication

*/
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

static void strassen_matmult(double *A, double *B, double *C, int size) {
// Allocate memory for all matrices combined
double *combined_matrices = (double *)malloc(29 * size * size * sizeof(double));
if (combined_matrices == NULL) {

fprintf(stderr, "Memory allocation failed\n");
exit(1);

}
// Pointers to mark the beginning of each matrix within the combined array
double *A11 = combined_matrices;
double *A12 = A11 + size * size;
double *A21 = A12 + size * size;
double *A22 = A21 + size * size;

double *B11 = A22 + size * size;
double *B12 = B11 + size * size;
double *B21 = B12 + size * size;
double *B22 = B21 + size * size;

double *C11 = B22 + size * size;
double *C12 = C11 + size * size;
double *C21 = C12 + size * size;
double *C22 = C21 + size * size;

double *M1 = C22 + size * size;
double *M2 = M1 + size * size;
double *M3 = M2 + size * size;
double *M4 = M3 + size * size;
double *M5 = M4 + size * size;
double *M6 = M5 + size * size;
double *M7 = M6 + size * size;

33

double *temp1 = M7 + size * size;
double *temp2 = temp1 + size * size;
double *temp3 = temp2 + size * size;
double *temp4 = temp3 + size * size;
double *temp5 = temp4 + size * size;
double *temp6 = temp5 + size * size;
double *temp7 = temp6 + size * size;

// Initialize matrices A and B to the combined array
#pragma omp parallel for collapse(2)
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
A11[i * size + j] = A[i * size + j];
A12[i * size + j] = A[i * size + j + size];
A21[i * size + j] = A[(i + size) * size + j];
A22[i * size + j] = A[(i + size) * size + j + size];

B11[i * size + j] = B[i * size + j];
B12[i * size + j] = B[i * size + j + size];
B21[i * size + j] = B[(i + size) * size + j];
B22[i * size + j] = B[(i + size) * size + j + size];

}
}

// Compute M1 to M7
#pragma omp parallel for collapse(2) shared(A11, A22, B11, B22, temp1, size)
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
// Calculate M1 = (A11+A22)*(B11+B22)
temp1[i * size + j] = (A11[i * size + j] + A22[i * size + j]) * (B11[i *

size + j] + B22[i * size + j]);
}

}

// Compute M2 to M7 in parallel
#pragma omp parallel for schedule(static) shared(A, B, size, temp2, temp3,

temp4, temp5, temp6, temp7)
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
// Calculate M2 = (A21+A22)*B11
temp2[i * size + j] = (A21[i * size + j] + A22[i * size + j]) * B11[i *

size + j];

// Calculate M3 = A11*(B12-B22)
temp3[i * size + j] = A11[i * size + j] * (B12[i * size + j] - B22[i *

size + j]);

// Calculate M4 = A22*(B21-B11)
temp4[i * size + j] = A22[i * size + j] * (B21[i * size + j] - B11[i *

size + j]);

// Calculate M5 = (A11+A12)*B22
temp5[i * size + j] = (A11[i * size + j] + A12[i * size + j]) * B22[i *

size + j];

// Calculate M6 = (A21-A11)*(B11+B12)
temp6[i * size + j] = (A21[i * size + j] - A11[i * size + j]) * (B11[i *

size + j] + B12[i * size + j]);

// Calculate M7 = (A12-A22)*(B21+B22)
temp7[i * size + j] = (A12[i * size + j] - A22[i * size + j]) * (B21[i *

size + j] + B22[i * size + j]);
}

}

34

// Recursively compute C matrices using M1 to M7
#pragma omp parallel
#pragma omp single
{

#pragma omp task
strassen_matmult(temp1, temp2, M1, size);
#pragma omp task
strassen_matmult(temp3, B22, M2, size);
#pragma omp task
strassen_matmult(A11, temp4, M3, size);
#pragma omp task
strassen_matmult(A22, temp5, M4, size);
#pragma omp task
strassen_matmult(temp6, temp7, M5, size);
#pragma omp taskwait

}

// Calculate C11, C12, C21, C22 using M1 to M7
#pragma omp parallel for collapse(2)
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
C11[i * size + j] = M1[i * size + j] + M4[i * size + j] - M5[i * size +

j] + M7[i * size + j];
C12[i * size + j] = M3[i * size + j] + M5[i * size + j];
C21[i * size + j] = M2[i * size + j] + M4[i * size + j];
C22[i * size + j] = M1[i * size + j] - M2[i * size + j] + M3[i * size +

j] + M6[i * size + j];
}

}

// Free memory after function execution
free(combined_matrices);

}

int main(int argc, char **argv) {
// Checking the number of arguments
if (argc != 4) {

fprintf(stderr, "Usage: %s <input file> <output file> <number of
threads>\n", argv[0]);

exit(1);
}

// Initialize variables
char filename[60];
strcpy(filename, argv[1]);
char outname[60];
strcpy(outname, argv[2]);
const int threads = atoi(argv[3]);
printf("Threads = %d\n", threads);
omp_set_num_threads(threads); // Setting the number of threads to be used in

the parallel region

// Read the input file
int size;
FILE *input;
input = fopen(filename, "r");
if (input == NULL) {

fprintf(stderr, "Error: Unable to open input file: %s\n", filename);
exit(1);

}
int read_res = fread(&size, sizeof(int), 1, input);

35

// Allocate memory for matrices A, B, and C
double *A = (double*)malloc(size * size * sizeof(double));
double *B = (double*)malloc(size * size * sizeof(double));
double *C = (double*)malloc(size * size * sizeof(double));

// Read matrices A and B from the input file
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
read_res = fread(&A[i * size + j], sizeof(double), 1, input);
if (read_res != 1) {

fprintf(stderr, "Error: Failed to read from input file\n");
exit(1);

}
}

}
fclose(input);
// Perform matrix multiplication
clock_t start = clock();
strassen_matmult(A, B, C, size);
clock_t end = clock();
double cpu_time_used = ((double)(end - start)) / CLOCKS_PER_SEC;
printf("Time taken for multiplication: %f seconds\n", cpu_time_used);

// Write the resulting matrix C to the output file
FILE *output;
output = fopen(outname, "w");
if (output == NULL) {

fprintf(stderr, "Error: Unable to open output file: %s\n", outname);
exit(1);

}
for (int i = 0; i < size; i++) {

for (int j = 0; j < size; j++) {
fwrite(&C[i * size + j], sizeof(double), 1, output);

}
}
fclose(output);

// Free allocated memory
free(A);
free(B);
free(C);

return 0;
}

36

MatLab code for creating the input files

function create_matrices_and_store_in_file(size)
% Generate random matrices A and B with elements between 100 and 999
A = 100 + 899 * rand(size);
B = 100 + 899 * rand(size);

% Create the filename based on the size
filename = sprintf(’input%d.txt’, size);

% Open the file for writing
fid = fopen(filename, ’w’);

% Check if the file opened successfully
if fid == -1

error(’Cannot open file: %s’, filename);
end

% Write the size of the matrices
fprintf(fid, ’%d\n’, size);

% Write matrix A row by row with specified format
fprintf(fid, ’%.3f ’, A’); % Transpose to write row-wise, 3 decimal places

% Add newline after matrix A
fprintf(fid, ’\n’);

% Write matrix B row by row with specified format
fprintf(fid, ’%.3f ’, B’);

% Close the file
fclose(fid);

% Display the matrices (optional)
disp(’Matrix A:’);
disp(A);
disp(’Matrix B:’);
disp(B);

end

37

Python code for creating the plots

import matplotlib.pyplot as plt
import numpy as np

Combining both tables for power-of-2 and not power-of-2 matrices
matrix_sizes_np2 = [111, 222, 444, 555, 666]
times_1_np2 = [0.983, 6.619, 47.185, 92.342, 143.031]
times_8_np2 = [0.169, 1.186, 8.581, 17.730, 26.351]

matrix_sizes_p2 = [64, 128, 256, 512, 1024]
times_1_p2 = [0.126, 0.879, 6.143, 42.494, 302.135]
times_8_p2 = [0.022, 0.155, 1.080, 7.500, 53.000]

plt.figure(figsize=(10, 6))

plt.loglog(matrix_sizes_np2, times_1_np2, ’o-’, color=’blue’, label=’1 Process (Not
Power of 2)’)

plt.loglog(matrix_sizes_np2, times_8_np2, ’s-’, color=’blue’, label=’8 Processes
(Not Power of 2)’)

plt.loglog(matrix_sizes_p2, times_1_p2, ’o-’, color=’orange’, label=’1 Process
(Power of 2)’)

plt.loglog(matrix_sizes_p2, times_8_p2, ’s-’, color=’orange’, label=’8 Processes
(Power of 2)’)

Theoretical complexity lines
n = np.linspace(10, 1000, 100) # Range for n
plt.loglog(n, 0.0000005 * n**2.807, ’--’, color=’red’, label=r’$\Theta(n^{2.807})$’)
plt.loglog(n, 0.000005 * n**3, ’--’, color=’green’, label=r’$\Theta(n^3)$’)

plt.xlabel(’Matrix Size’)
plt.ylabel(’Time [s]’)
plt.title(’Matrix Multiplication Run Time vs. Size (Log-Log Scale)’)
plt.legend()
plt.grid(True, which="both", ls="--")
plt.show()

Close to which theoretical complexity line
matrix_sizes = np.array([111, 222, 444, 555, 666])
times_1 = np.array([0.983, 6.619, 47.185, 92.342, 143.031])

plt.figure(figsize=(10, 6))
plt.loglog(matrix_sizes, times_1, ’o-’, color=’blue’, label=’Measurements (1

process)’)

Theoretical complexity lines
n = np.linspace(111, 666, 100)
base_x = matrix_sizes[0]
base_y = times_1[0]
coeff_2807 = base_y / base_x**2.807
coeff_3 = base_y / base_x**3

Theta(n^2.807) in red
plt.loglog(n, coeff_2807 * n**2.807, ’-’, color=’red’, label=r’$\Theta(n^{2.807})$

(Adjusted)’)
Theta(n^3) in orange
plt.loglog(n, coeff_3 * n**3, ’-’, color=’orange’, label=r’$\Theta(n^3)$

(Adjusted)’)

plt.xlabel(’Matrix Size’)
plt.ylabel(’Time [s]’)
plt.title(’Matrix Multiplication Run Time vs. Size (Log-Log Scale, Adjusted)’)
plt.legend()
plt.grid(True, which="both", ls="--")
plt.show()

38

	Introduction
	Problem description
	History of how to reduce the complexity of eq. 1.1.2

	The chosen approach

	Solution Method
	The Serial Code
	Optimization of the Serial Code
	Parallelization of the Serial Code

	Experiments
	Hardware specifications
	Performance of the code

	Conclusion
	Further improvements

	References

